Strings

Marco Gallotta
SACO Training Camp
March 2007



String Matching

* Text: A string of n characters to search in

* Pattern: A string of m characters to search for



Brute Force

* Search for pattern starting at each position

* Reasonable for average case, but O(nm) worst
case



Example

* Searching for “BARBER”
~ BARBER
- |
- ... A ...
- BARBER



Horspool's Algorithm

* The “A” will cause a definite failure for the next
three positions, so we can safely shift by four.
- BARBER
- |
- ... A ...
- BARBER

- .. A ...



Shift Table

jump = [m,mM,...,m]
for i = 0..m-2:

jump[pattern[i1]] = m-1-1

* jump[a] is the shift when failing to match character a.

* For the pattern “BARBER?” the shift table is:



Horspool's Algorithm: Example

e JIM SAW ME IN A BARBERSHOP
e BARBER



Horspool's Algorithm: Example

e JIM SAW ME IN A BARBERSHOP
e BARBER
. BARBER



Horspool's Algorithm: Example

JIM SAW ME IN A BARBERSHOP
BARBER

BARBER

BARBER



Horspool's Algorithm: Example

JIM SAW ME IN A BARBERSHOP
BARBER BARBER

BARBER

BARBER



Horspool's Algorithm: Example

JIM SAW ME IN A BARBERSHOP
BARBER BARBER

BARBER BARBER

BARBER



Horspool's Algorithm: Example

JIM SAW ME IN A BARBERSHOP
BARBER BARBER

BARBER BARBER

BARBER BARBER



Analysis

* For random text it is O(n), but worst case is still
O(nm)

* Example: Pattern “baa”, text “aaaaaaaa”

* Boyer-Moore algorithm improves the worst case
- O(n)

* Uses an additional shift table for based on the
matching suffix



Trie

* Data structure for storing a set of strings
* Edges represent characters

* Nodes represent string terminations



* best

* tap
* be

* bat
* bet
* train

* bed

557

Trie



* pest

* tap
* be

* bat
* bet
* train

* bed

@5 5 -

Trie



* pbest

* tap

* be

* pbat
* bet
* train

* bed




* pbest

* tap
* be

* bat
* bet
* train

* bed

Trie



* best
* tap
* be
* bat

* bet

* train

* bed

Ly
© 5 & -

Trie



* pbest

* tap

* be

* pat
* bet
* train

* bed

g =
@35 ® -

Trie

@ -G~



* pbest

* tap
* be

* bat
* bet
* train

* bed




Trie: Analysis

* Insertions and lookups are O(n) for a string of
length n

* Longer strings and sparse graphs take up lots
of memory

* Patricia tries solve this problem by grouping
consecutive non-terminating edges



Questions



